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Introduction

Introduction
Building a Trusted Ecosystem

Rapidly improving AI capabilities and autonomy hold significant promise of transforma-
tion, but are also driving vigorous debate on how to ensure that AI is safe, i.e., trustworthy, 
reliable, and secure. Building a trusted ecosystem is therefore essential – it helps people 
embrace AI with confidence and gives maximal space for innovation while avoiding back-
lash. This requires policymakers, industry, researchers and the broader public to collective-
ly work toward securing positive outcomes from AI’s development. AI safety research is a 
key dimension. Given that the state of science today for building trustworthy AI does not 
fully cover all risks, accelerated investment in research is required to keep pace with com-
mercially driven growth in system capabilities.
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Introduction

Goals
The 2025 Singapore Conference on AI (SCAI): International Scientific Exchange on AI 

Safety aims to support research in this important space by bringing together AI scientists 
across geographies to identify and synthesise research priorities in AI safety. The result, 
The Singapore Consensus on Global AI Safety Research Priorities, builds on the Internation-
al AI Safety Report-A (IAISR) chaired by Yoshua Bengio and backed by 33 governments. By 
adopting a defence-in-depth model, this document organises AI safety research domains 
into three types: challenges with creating trustworthy AI systems (Development), challeng-
es with evaluating their risks (Assessment), and challenges with monitoring and interven-
ing after deployment (Control).

Through the Singapore Consensus, we hope to globally facilitate meaningful conver-
sations between AI scientists and AI policymakers for maximally beneficial outcomes. 
Our goal is to enable more impactful R&D efforts to rapidly develop safety and evaluation 
mechanisms and foster a trusted ecosystem where AI is harnessed for the public good.

Areas of mutual interest: While companies and nations often compete on AI research 
and development, there are also incentives to find alignment and common interests. This 
synthesis covers areas where different parties may be competitive, but also highlights 
examples from the broader landscape of areas of mutual interest – research products and 
information that developers would find it in their self-interest to share widely (Bucknall-B). 
Certain safety advances offer minimal competitive edge while serving a common interest 
– similar to how competing aircraft manufacturers (e.g., Boeing and Airbus) collaborate on 
aviation safety information and standards. In AI, particular areas for potentially mutual-
ly-beneficial cooperation span sections 1-3 of this report and include certain verification 
mechanisms, risk-management standards, and risk evaluations (Bucknall-B). The moti-
vation is clear: no organisation or country benefits when AI incidents occur or malicious 
actors are enabled, as the resulting harm would damage everyone collectively.

Process

Key event
26th April 2025 – SCAI: 
International Scientific 
Exchange on AI Safety

Contributors
More than 100 participants 
in attendance for discussion 
and feedback

Representation
Participants from 11 countries 
were present

This document represents a comprehensive synthesis of research proposals drawn from 
the International AI Safety Report-B and complementary recent research prioritisation 
frameworks, including UK AISI, Anthropic-F, Anwar, Bengio-A, GDM, Hendrycks-A, Ji, Li-A, 
OpenAI-B, NIST, Reuel, Slattery, and Weidinger-A. Initially designed as a consultation draft 
by the Expert Planning Committee (Dawn Song, Lan Xue, Luke Ong, Max Tegmark, Stuart 
Russell, Tegan Maharaj, Ya-Qin Zhang, and Yoshua Bengio), it was distributed to all confer-
ence participants to solicit comprehensive feedback. Following several rounds of updates 
based on further participant feedback in writing and in person, this document has been 
designed to synthesise points of broad consensus among diverse researchers. The full list of 

https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://arxiv.org/pdf/2504.12914
https://arxiv.org/pdf/2504.12914
https://arxiv.org/pdf/2501.17805
https://cdn.prod.website-files.com/663bd486c5e4c81588db7a1d/67c99c8261da5261d5553893_AISI%20Challenge%20Fund_Priority%20Research%20Areas%202025%20(1).pdf
https://alignment.anthropic.com/2025/recommended-directions/
https://arxiv.org/pdf/2404.09932
https://arxiv.org/pdf/2404.09932
https://www.science.org/doi/full/10.1126/science.adn0117
https://www.science.org/doi/full/10.1126/science.adn0117
https://storage.googleapis.com/deepmind-media/DeepMind.com/Blog/evaluating-potential-cybersecurity-threats-of-advanced-ai/An_Approach_to_Technical_AGI_Safety_Apr_2025.pdf
https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2310.19852
https://dl.acm.org/doi/10.1145/3555803
https://dl.acm.org/doi/10.1145/3555803
https://openai.com/safety/how-we-think-about-safety-alignment/
https://www.nist.gov/news-events/news/2025/01/updated-guidelines-managing-misuse-risk-dual-use-foundation-models
https://www.nist.gov/news-events/news/2025/01/updated-guidelines-managing-misuse-risk-dual-use-foundation-models
https://arxiv.org/abs/2407.14981
https://airisk.mit.edu/
https://airisk.mit.edu/
https://arxiv.org/abs/2112.04359
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Introduction

conference participants who contributed to this Singapore Consensus process is presented 
at the beginning of this document, and includes researchers from leading academic institu-
tions and AI developers, as well as representatives from governments and civil society. 

We have attempted to be inclusive of both terminology and research topic suggestions from 
researchers in academia, industry, and civil society. This synthesis presented unique challeng-
es because different authors have used a variety of non-equivalent definitions and classifica-
tion schemes. This report therefore takes a humble approach: the definitions of key terms in 
Table 1 below simply specify how we use various terms in this report, to avoid confusion, and 
we make no claims whatsoever to these being better than other alternative definitions. 

Scope
We limit our discussion to technical AI safety research, focused on making AI more 

trustworthy rather than merely more powerful, and excluding AI policy research. We focus 
primarily on general-purpose AI: Following the International AI Safety Report, the term 
‘AI systems’ in this document should be understood to refer to general-purpose AI (GPAI) 
systems – systems that can perform or can be adapted to perform a wide range of tasks 
(IAISR). This includes language models that produce text (e.g. chat systems) as well as ‘mul-
timodal’ models which can work with multiple types of data, often including text, images, 
video, audio, and robotic actions. Importantly, it includes general-purpose agents – systems 
that autonomously act and plan to accomplish complex tasks, for example by controlling 
computers. Developing more powerful agents is a core focus of AI developers as their grow-
ing deployment presents new major risks and opportunities.

We emphasise that technical solutions relating to general-purpose AI systems are nec-
essary but not sufficient for the overall safety of AI. Our collective ability to responsibly 
manage AI risks and opportunities will ultimately depend on our choices to build a healthy 
AI ecosystem, study risks, implement mitigations, and integrate solutions into effective risk 
management frameworks. 

Structure
Inspired by the 2025 International AI Safety Report (IAISR), this document adopts a de-

fence-in-depth model and groups technical AI safety research topics into three broad areas 
from risk assessment that informs subsequent development and deployment decisions, to 
technical methods in the system development phase, and tools for control after a system 
has been deployed. The three identified areas have interesting overlaps as illustrated in 
Figure 1:

1.	 Risk Assessment: The primary goal of risk assessment is to understand the severity 
and likelihood of a potential harm. Risk assessments are used to prioritise risks and 
determine if they cross thresholds that demand specific action. Consequential devel-
opment and deployment decisions are predicated on these assessments. The research 
areas in this category involve developing methods to measure the impact of AI 
systems for both current and future AI, enhancing metrology to ensure that these 
measurements are precise and repeatable, and building enablers for third-party 

https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
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audits to support independent validation of these risk assessments.

2.	 Development: AI systems that are trustworthy, reliable and secure by design give 
people the confidence to embrace and adopt AI innovation. Following the classic safe-
ty engineering framework, the research areas in this category involves specifying the 
desired behaviour, designing an AI system that meets the specification, and verify-
ing that the system meets its specification. 

3.	 Control: In engineering, “control” usually refers to the process of managing a sys-
tem’s behaviour to achieve a desired outcome, even when faced with disturbances 
or uncertainties, and often in a feedback loop. The research areas in this category 
involve developing monitoring and intervention mechanisms for AI systems, extend-
ing monitoring mechanisms to the broader AI ecosystem to which the AI system 
belongs, and societal resilience research to strengthen societal infrastructure (e.g. 
economic, security) to adapt to AI-related societal changes.

Figure 1: This venn diagram illustrates how AI safety techniques are related. We make a system 
behave as desired (assessed in Area 1) both by how we design it (Area 2) and how we control it after-
ward (Area 3). Some assessment tools can support both Areas 2 and 3. Overlap between Areas 2 and 
3 stems from different choices for what to count as part of the system versus controlling feedback 
loops and scaffolds. For example, an external filter that blocks questions about bioweapons falls into 
Area 2 if we consider the large language model to be the system, but in Area 1 if we consider the filter 
to be part of the system.
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Term How it is used in this report

Specification Specific definition of desired system behaviour.

Validation Ensuring that the specification and the final system meets the needs of the 
user, developer, or society (did I build the right system?) .

Validity How well a measurement or assessment tool actually measures what it 
claims to measure.

AI agent An AI which can make plans to achieve goals, adaptively perform tasks 
involving multiple steps and uncertain outcomes along the way, and interact 
with its environment – for example by creating files, taking actions on the 
web, or delegating tasks to other agents – with little to no human oversight.

AI model A computer program, often automatically created by learning from data, 
designed to process inputs and generate outputs. AI models can perform 
tasks such as prediction, classification, decision-making, or generation, 
forming the engine of AI systems.

AI system An integrated setup that combines one or more AI models with other 
components, such as user interfaces or content filters, to produce an 
application that users can interact with.

Verification Providing qualitative or quantitative justifications or guarantees that a 
system meets its specification (did I build the system right?).

Assurance The broader process of determining if a system performs as intended. As 
such, providing assurance requires appropriate specification, validation, 
design, implementation and verification.

Control Monitoring a system after it has been created and intervening where needed, 
often in a feedback loop, to ensure the system behaves as desired.

Alignment Creating/modifying AI to meet intended behaviour, goals, and values 
(current emphasis tends to be on behaviour).

Intelligence Ability to accomplish goals.

Artificial 
intelligence (AI)

Non-biological intelligence.

Narrow 
intelligence

Ability to accomplish goals in a narrow domain, e.g. chess.

Artificial general 
intelligence (AGI)

AI that can do most cognitive work as well as humans. This implies that it is 
highly autonomous and can do most economically valuable remote work as 
well as humans. 

Artificial super-
intelligence (ASI)

AI that can accomplish any cognitive work far beyond human level.

Table 1: Glossary of how we use key terminology in this report. Specification, validation, assurance, 
and verification are central concepts in systems engineering. Note: Different authors have used a 
variety of non-equivalent definitions. The definitions in this table simply specify how this report uses 
various terms, not how they should be used in general. We use the terms “AGI”, “ASI” and “intelligence” 
much as in the original definitions by Gubrud, Legg, and Bostrom.
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1 Risk Assessment
Associated with IAISR chapter 3.3  

The primary goal of risk assessment is to understand the severity and likelihood of a potential 
harm. Risk assessments are used to prioritise risks and determine if they cross thresholds that 
demand specific action. Consequential development and deployment decisions are predicated 
on these assessments. The research areas in this category involve:

A.	 Developing methods to measure the impact of AI systems for both current and future AI 
– This includes developing standardised assessments for risky behaviours of AI systems 
through audit techniques and benchmarks, evaluation and assessment of new capabilities, 
including potentially dangerous ones; and for real-world societal impact such as labour, 
misinformation and privacy through field tests and prospective risks analysis.

B.	 Enhancing metrology to ensure that the measurements are precise and repeatable – This 
includes research in technical methods for quantitative risk assessment tailored to AI 
systems to reduce uncertainty and the need for large safety margins. This is an important 
open area of research.

https://www.gov.uk/government/publications/international-ai-safety-report-2025/international-ai-safety-report-2025#risk-identification-and-assessment
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C.	 Building enablers for third-party audits to support independent validation of risk 
assessments – This includes developing secure infrastructure that enables thorough 
evaluation while protecting intellectual property, including preventing model theft.

Existing AI regulations and AI company commitments require rigorous risk identification 
and assessment, and consequential deployment decisions are predicated on these assess-
ments (e.g. EU, OpenAI-A, Anthropic-E, Google). The primary goal of risk assessment is to un-
derstand the severity and likelihood of a potential harm. Risk assessments are used to prior-
itise risks and to determine if they cross risk thresholds that demand specific action such as 
mitigation. These thresholds – often defined in terms of measurable key risk indicators such 
as model evaluations (Campos) – are useful markers for further intervention. For example, if 
a system is found to have the ability to substantially assist malicious users in conducting cy-
berattacks, this may be considered an unacceptable risk. Risk assessment also informs safer 
development practices (Section 2) and control practices (Section 3) needed to mitigate risks.

Carefully defined risk thresholds are this report’s first example of a potential area of 
mutual interest – actors may find it in their self-interest to share them widely or cooperate 
on them, even with competitors. This report highlights several further examples of these 
areas, but does not highlight every example explicitly.

The research areas in this category involve developing methods to study the present im-
pacts of AI systems and forecast their potential future implications. 

1.1 Audit techniques and benchmarks
Techniques and benchmarks with which AI systems can be effectively and efficiently 

tested for harmful behaviours are highly varied and central to risk assessments (IAISR, 
Birhane-A). However, developing high-quality standardised assessments for AI system ca-
pabilities is difficult due to the inability of research benchmarks to capture complexities in 
the real world (Raji, Eriksson). For example, different evaluations of AI systems’ values can 
produce very different results depending on simple aspects of experimental design (Khan). 
Frontiers for future work include the generation of high-quality evaluations, dynamic 
automated evaluations, developing technical “red lines” or risk thresholds, establishing best 
practices for translating research findings into evaluation protocols that can be standard-
ised across different organisations, and incorporating auditing into decision-making frame-
works. It will also be key to keep evaluation resources secure and maintain them over time 
to reduce the possibility of developers gaming them.

1.2 Downstream impact assessment and forecasting
Assessing and forecasting the many societal impacts of AI systems is one of the most 

central goals of risk assessments. However, it is also very challenging due to its inherent 
prospective and complex nature (Weidinger-B, Solaiman). Research on forecasting involves 
studying usage data, analysing trends, risk modelling, predicting progress in AI capabilities, 
developing models of AI’s future impacts, and updating forecasts in response to findings 
from field tests and usage data. This research also plays an important role in informing 

https://artificialintelligenceact.eu/
https://cdn.openai.com/openai-preparedness-framework-beta.pdf
https://www.anthropic.com/news/anthropics-responsible-scaling-policy
https://deepmind.google/discover/blog/updating-the-frontier-safety-framework/
https://arxiv.org/abs/2502.06656
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://arxiv.org/abs/2401.14462
https://arxiv.org/abs/2111.15366
https://arxiv.org/abs/2502.06559v1
https://arxiv.org/abs/2503.08688
https://arxiv.org/abs/2310.11986
https://arxiv.org/abs/2306.05949
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which evaluations and audits are needed for valid assessments of likely and severe risk sce-
narios. Because of the complexities involved in the study of downstream societal impacts, 
continued work to thoroughly monitor and study them will require nuanced analysis, inter-
disciplinarity, and inclusion (Wallach). 

1.2.1 Field tests
Field tests and human participant studies aim to assess the real-world impacts of AI 

systems. They include analysing current impacts on topics such as deepfakes, labour, in-
equality, market concentration, misinformation, polarisation, privacy, mental health, and 
education. For example, some researchers have published details of how AI systems are be-
ing used and which professions they are affecting, aiming to inform decision-makers on the 
economic and labour market impacts of AI (Anthropic-A). Developers also sometimes start 
“bug bounty programs” to incentivise users to find and report vulnerabilities so that they 
can be fixed (e.g. Anthropic-H). One kind of field test that is particularly relevant to mali-
cious use risks is “uplift studies” (Bateman). Uplift studies aim to assess how much an AI 
system can help users with a task (e.g. performing cyberattacks) relative to users without 
access to that system. For example, some AI labs have tested if using LLMs uplifts humans’ 
abilities to plan biological attacks (OpenAI-C). Field tests, combined with other usage data 
can also assess questions such as how an AI system affects the mental health of users. As in 
the field of clinical drug trials, field tests may start with limited, controlled tests, and then 
gradually expand to real-world contexts to uncover new risks and side effects.

1.2.2 Prospective risk analysis and structured analytical techniques
The International AI Safety Report (IAISR) highlights the ‘evidence dilemma’ for emerg-

ing AI risks. On the one hand, early mitigations for emerging risks can turn out to be unnec-
essary or ineffective. On the other hand, waiting for clear evidence of a risk before mitigat-
ing it can leave society unprepared or even make mitigation impossible. 

To navigate this dilemma, transparency infrastructure and early risk assessment are key. 
When assessing risks that have not yet occurred, or risks that may take a variety of forms 
(e.g. cyber attacks), it is often necessary to use prospective risk analysis and structured 
analytical techniques. These techniques are often used outside the field of AI, e.g. in nucle-
ar safety, cybersecurity, or aircraft flight control. They have also been crucial in historical 
debates, e.g. over the health impacts of ozone depletion and smoking. Nonetheless, they are 
not yet widely used in AI risk assessment (IAISR, Murray, Casper-C).

Prospective risk analysis and structured analytical techniques include (IAISR):

•	 Explorative foresight: Scenario analysis and planning; horizon scanning; threat mod-
elling and risk modelling.

•	 Probabilistic risk assessment (often used in high-reliability industries like nuclear and 
aerospace).

•	 Judgement elicitation and integration (e.g. Delphi method).

•	 Systems thinking.

•	 Causal mapping techniques (e.g. Bow-Tie analysis, Event Tree Analysis).

https://arxiv.org/abs/2411.10939
https://www.anthropic.com/economic-index
https://www.anthropic.com/news/model-safety-bug-bounty
https://carnegieendowment.org/research/2024/07/beyond-open-vs-closed-emerging-consensus-and-key-questions-for-foundation-ai-model-governance?lang=en
https://cdn.openai.com/o1-system-card-20241205.pdf
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://www.ai-frontiers.org/articles/ai-risk-management-can-learn-a-lot-from-other-industries
https://arxiv.org/abs/2502.09618
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
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Structured risk assessments are also needed to combine evidence in order to construct a 
safety case, used by an AI developer to convincingly demonstrate that their system is safe 
(Clymer, Buhl). This requires assessing the full life cycle and the full stack of safety tech-
niques used, as well as an assessment of the systemic interaction between components and 
the outside world (see 1.6).

1.3 Secure evaluation infrastructure
External auditors and oversight bodies need infrastructure and protocols that enable 

thorough evaluation while protecting sensitive intellectual property. Ideally, evaluation 
infrastructure should enable double-blindness: the evaluator’s inability to directly access 
the system’s parameters and developers’ inability to know what exact evaluations are run 
(Reuel, Bucknall-A, Casper-B). Meanwhile, the importance of mutual security will continue 
to grow as system capabilities and risks increase. Methods for developing secure infrastruc-
ture for auditing and oversight are known to be possible. However, open challenges include 
determining what level of access is appropriate for which evaluations and conducting the 
engineering work of designing, building, and integrating efficient infrastructure. Further 
research should also explore how audit results can be effectively and reliably incorporated 
into risk management and decision-making frameworks. 

1.4 System safety assessment
Safety assessment is not just about individual AI systems, but also their interaction with 

the rest of the world. For example, when an AI company discovers concerning behaviour 
from their system, the resulting risks depend, in part, on having internal processes in place 
to escalate the issue to senior leadership and work to mitigate the risks.

System safety considers both AI systems and the broader context that they are deployed 
in. The study of system safety focuses on the interactions between different technical com-
ponents as well as processes and incentives in an organisation (IAISR, Hendrycks-B, AISES, 
Alaga). The practice of system safety engineering has a long history in areas such as aircraft 
flight control and nuclear reactor control (Dekker). System safety assessments evaluate if a 
critical system continues to function as intended even under human error, insider threats, 
or the failure of individual technical components. In AI safety assessments, this includes 
analysing how AI deployments might interact with existing social, economic, and political 
structures to create emergent downstream risks that individual system evaluations might 
miss (Weidinger-B), as well as analysing risks that emerge from multiple AI systems and 
humans interacting with each other.

1.5 Metrology for AI risk assessment
Metrology, the science of measurement, has only recently been studied in the context of 

AI risk assessment (IAISR, Hobbhahn). Current approaches generally lack standardisation, 
repeatability, and precision. For example, existing measurements such as benchmarks and 
audits often exhibit weak internal validity (ensuring assessments measure actual capabil-
ities rather than test-taking artifacts), external validity (addressing how well test results 

https://arxiv.org/abs/2403.10462
https://arxiv.org/abs/2410.21572
https://arxiv.org/abs/2407.14981
https://arxiv.org/abs/2503.01470
https://dl.acm.org/doi/abs/10.1145/3630106.3659037
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://www.aisafetybook.com/textbook/systemic-factors
https://www.aisafetybook.com/textbook/systemic-safety
https://arxiv.org/abs/2409.08751
https://books.google.co.uk/books?hl=en&lr=&id=dwWSDwAAQBAJ&oi=fnd&pg=PP1&dq=systems+safety+dekker&ots=-Sfpjzass7&sig=y9IEDsuUeQlEr8BXiq3DOrFgoJA&redir_esc=y#v=onepage&q=systems%20safety%20dekker&f=false
https://arxiv.org/abs/2310.11986
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://www.apolloresearch.ai/blog/we-need-a-science-of-evals
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generalise to real-world deployment contexts), and construct validity (accurately meas-
uring abstract safety-relevant concepts such as deception or power-seeking tendencies). 
Typical approaches to quantitative risk assessment come from the field of actuarial risk 
assessment, (i.e. the insurance industry). While these risk assessment methods can be very 
useful for quantifying and studying risks which are easily associated with monetary dam-
ages, they can also fail to capture other kinds of risk, for example those which arise from 
interaction of multiple risks, or from systemic factors not easily quantified. Research in 
technical methods for quantitative risk assessment tailored to AI systems is an important 
open area. Enhanced metrology would reduce uncertainty and the need for large safety 
margins, enabling more reliable comparisons across AI systems and more precise identifica-
tion of KRIs such capability thresholds that trigger risk thresholds.

1.6 Dangerous capability and propensity assessment
To assess certain hazards posed by an AI system, it is necessary to elicit and assess po-

tentially dangerous capabilities (Phuong, Shevlane, Anthropic-B, IAISR) including dual-use 
cyber, chemical, biological, and nuclear knowledge, as well as capabilities for psychological 
manipulation, AI research and development, and autonomy which increases the risk of loss 
of control (see below). To assess the likelihood that these capabilities will cause harm, it is 
necessary to assess the system’s propensities to use them. However, the science of evaluat-
ing the propensities and capabilities of frontier AI systems remains nascent (Apollo, Reuel). 
Rigorously assessing them is challenging because AI capabilities are broad, fast-moving, 
and context-dependent. Unexpected propensities, capabilities, or limitations are often 
discovered after a system is developed and deployed (IAISR). For example, a recent system 
consistently provided instructions for building bombs when asked in the form or morse 
code, which was only discovered after its release (Yuan). In general, current tests are not 
yet sufficient to rule out a given harmful capability or behaviour. Frontiers for additional 
research include methods to more reliably elicit harmful model capabilities and propensi-
ties (IAISR) and methods for cheaply inferring the existence of rare or suppressed system 
capabilities that may be difficult to elicit in lab settings.

Some research on dangerous capability assessment constitutes an area of mutual inter-
est. For example, a company or country may find it in their interest to inform others if they 
have discovered that a new system poses a global risk of misuse for criminal purposes, so 
that others can ensure that the resulting risk will be mitigated. At the same time, methods 
for eliciting more dangerous capabilities from a system, rather than just testing them, could 
be sensitive to share.

1.7 Loss-of-control risk assessment
Loss of control refers to scenarios where advanced AI systems – such as AGI– come to 

operate outside of human control, with no clear path to regaining control. This includes 
both scenarios that involve passively ceding control and scenarios that involve AI systems 
actively undermining control measures in pursuit of their own goals.

Assessing this risk depends heavily on assessing and forecasting AI’s 

https://arxiv.org/abs/2403.13793
https://arxiv.org/abs/2305.15324
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://www.apolloresearch.ai/blog/we-need-a-science-of-evals
https://arxiv.org/abs/2407.14981
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://openreview.net/forum?id=MbfAK4s61A
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
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control-undermining capabilities. These include AI agency (autonomous action and plan-
ning), oversight evasion, persuasion, autonomously earning or seizing financial and com-
puting resources, conducting cyber attacks, as well as AI research and development (IAISR). 
Assessments of control loss risk also focus on understanding propensities – how often and 
why AI systems use their control-undermining capabilities against the preferences of their 
developers. Evidence for all of the above control-undermining capabilities is growing but 
current capabilities remain insufficient to allow a loss of control (IAISR). However, there 
is evidence of today’s AI systems using their limited control undermining capabilities in 
certain scenarios, e.g. to avoid being replaced (IAISR, Anthropic-C, OpenAI-D).

There is currently a lack of expert consensus on the likelihood of loss of control scenarios 
as stated in the International AI Safety Report (IAISR): “There is broad consensus that cur-
rent general-purpose AI lacks the capabilities to pose this risk. However, expert opinion on 
the likelihood of loss of control within the next several years varies greatly: some consider 
it implausible, some consider it likely to occur, and some see it as a modest-likelihood risk 
that warrants attention due to its high potential severity”. For example, leading AI CEOs and 
researchers recently signed the statement “Mitigating the risk of extinction from AI should 
be a global priority alongside other societal-scale risks such as pandemics and nuclear war” 
(CAIS). This diversity of opinion underscores a need for improved understanding and meth-
odology for risk assessments on loss of control risks to obtain more evidence and consensus. 

Promising control risk assessment research includes taking each of the most promising 
control strategies and attempting to quantify their success probability. For example an MIT 
group (Engels) outlined a research program for quantifying the reliability of nested scala-
ble oversight, an approach where less capable systems oversee more capable ones.

https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2412.14093
https://arxiv.org/abs/2503.11926
https://arxiv.org/abs/2503.11926
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://safe.ai/work/statement-on-ai-risk
https://arxiv.org/abs/2504.18530
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2 Developing Trustworthy, Secure 
and Reliable Systems 

Associated with IAISR chapter 3.4.1  

AI systems that are trustworthy, reliable and secure by design give people the confidence 
to embrace and adopt AI innovation. Following a classic safety engineering framework, the 
research areas in this category involves:

A.	 Specifying and validating the desired behaviour – This includes technical methods to 
address the complex challenges in specifying system behaviours in a way that accurately 
captures the desired intent without causing undesired side effects, for both single-
stakeholder settings (e.g. reward hacking, scalable methods to discover specification 
loopholes) and multi-stakeholder settings (e.g. balancing competing preferences, ethical 
and legal alignment).

https://www.gov.uk/government/publications/international-ai-safety-report-2025/international-ai-safety-report-2025#training-more-trustworthy-models
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B.	 Designing a system that meets the specification – This covers techniques for training 
models – both closed and open weights – that are trustworthy (e.g. reducing confabulation, 
increasing robustness against tampering), alternative finetuning methods to make specific 
precise changes to an AI system (e.g. model editing), and methods to build AI systems in a 
way that are guaranteed to meet their specifications (e.g. verifiable programme synthesis, 
world models with formal guarantees). 

C.	 Verifying that the AI system meets its specification – This entails techniques to provide 
high-confidence assurances that an AI system meets its specifications (e.g. formal 
verification), including in novel contexts (e.g. robustness testing), as well as interpretability 
techniques to look into the black box to understand why the AI system behaves the way it 
does (e.g. mechanistic interpretability).

The research areas in this category involve developing technical methods for creating saf-
er and more trustworthy systems. This section focuses on the system development phase, 
whereas Section 3 “Control: Monitoring and Intervention,” focuses on techniques used 
during and after deployment.

It has been argued that “society will reject autonomous agents unless we have some 
credible means of making them safe” (Weld). Motivated by this concern, the following sub-
sections explore methods for developing safe and trustworthy systems. We follow a classic 
safety engineering framework by examining: how to specify precisely what properties we 
want an AI system to have, validate that these properties are desirable, design and imple-
ment the system to meet the specification, and verify that it meets its specification.

Relationship to other concepts
What is alignment? The commonly used term “alignment” has many different definitions in the 
AI literature, not all of which are compatible (Gabriel). A common definition is “the process of 
ensuring that an AI’s goals, values, and behaviours are consistent with those intended by its 
human creators or operators.” However, since scientists still largely lack an understanding of what, 
if any, coherent “goals” or “values” today’s frontier AI systems have, current alignment research de 
facto focuses only on the “behaviour” part of this definition. So in practice, much current AI safety 
research uses a working definition of alignment as “ensuring that AI behaves as intended.”

What is assurance? Assurance refers to the broader process of determining if a system performs 
as expected. As such, providing assurance requires appropriate specification, validation, design, 
implementation and verification.

What is robustness? Robust systems continue to behave as intended under a broad range of 
circumstances. This includes unfamiliar inputs as well as “adversarial” inputs designed to make 
the system fail. For example, state-of-the-art AI systems can be “jailbroken” into producing 
harmful text or instructions – against their developer’s intentions – when a user asks using 
adversarial prompting techniques.

2.1 Specification & Validation: Defining the system’s purpose
“How do we want the system to behave?”

Specification involves defining desired system behaviour, whereas validation ensures 
that the specification meets the needs of the user, developer, or society – did I build 
the right system? In other words, specification and validation require confronting the 

https://dl.acm.org/doi/10.5555/2891730.2891891
https://arxiv.org/abs/2404.16244
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complexity of defining objectives in a way that captures user or societal intent without 
omitting important constraints or causing undesired side effects, as well as dealing with 
disagreement and tradeoffs between diverse stakeholders.

2.1.1 Single-Stakeholder Settings
A key specification/validation challenge is to develop faithful methods to translate 

human oversight into automated systems: How can we design processes for developing 
automated AI proxies for humans based on human feedback and demonstrations?

Avoiding reward hacking and unintended consequences: Even in a simple setting with 
one human’s well-defined and fixed preferences, subtle mis-specifications can yield unac-
ceptable results if the AI system optimises rigidly for the literal specification rather than 
the user’s true intent. For example, training a chatbot to say things that users approve of 
can cause it to unintentionally learn to pander to the user’s specific opinions (Sharma). 
Such rigid optimisation can also produce emergent behaviours that were not planned by 
the developer such as “reward hacking” (OpenAI-E), unwanted power-seeking (Ngo), sab-
otage behaviours (Ladish, Hubinger-B, Omohundro, Russell), and producing misleading 
statements (Wen-A). One documented case showed an AI system actively identifying and 
exploiting vulnerabilities in how its programming work was scored, explicitly stating “let’s 
hack” while finding solutions that passed tests without solving the intended problems 
(OpenAI-D). When the developer trained the model to avoid such plans, the system learned 
to obfuscate its deceptive plans instead of not creating them. This is sometimes referred 
to as the “King Midas problem”, in reference to the legend where the behaviour of turning 
everything he touched into gold turned out to be less beneficial than intended. Further-
more, systems can behave in accordance with consistent ‘values’ and ‘value systems’, which 
are sometimes unexpected by their developers and can be actively harmful – such as wide-
ly-used AI systems placing more value on their own existence than on human well-being 
(Mazeika, Betley). These challenges highlight the value of work to define and implement 
more reliable frameworks for specifying true human goals in the AI development process. 
Paradigms like “Assistance Games”, where an AI system must infer and act upon a user’s 
goals under uncertainty offer methods for systems to actively learn users’ under-specified 
goals (Hadfield-Menell, Shah-A).

Defining clear boundaries for acceptable behaviour: When designing frontier AI sys-
tems, it is difficult to precisely define the boundaries between acceptable and unacceptable 
behaviour. Many of these challenges stem from the dual use nature of information. For 
example, some biology lab protocols are useful for both benign and harmful bioengineer-
ing experiments. Defining acceptable behaviours is made further challenging by how some 
harmful tasks can be decomposed into individually-benign subtasks (e.g. Jones). Effectively 
defining safe behavioural boundaries and ensuring that systems can learn them is an ongo-
ing challenge which requires an extensive understanding of emerging AI misuse threats. 

Scalable methods to discover specification loopholes: How can we systematically iden-
tify subtle flaws in the specification that only appear under unusual or adversarial condi-
tions? How can we progressively lessen those ambiguities or malspecified edge cases via 

https://arxiv.org/abs/2310.13548
https://openai.com/index/chain-of-thought-monitoring/
https://arxiv.org/abs/2209.00626
https://arxiv.org/abs/2502.13295
https://arxiv.org/abs/2410.21514
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351251389-3/basic-ai-drives-stephen-omohundro
https://books.google.co.uk/books?hl=en&lr=&id=Gg-TDwAAQBAJ&oi=fnd&pg=PT8&dq=human+compatible&ots=qo0HYHgjI4&sig=7hUgS473aqU32FZINXwbiYuf2eE&redir_esc=y#v=onepage&q=human%20compatible&f=false
https://arxiv.org/abs/2409.12822
https://cdn.openai.com/pdf/34f2ada6-870f-4c26-9790-fd8def56387f/CoT_Monitoring.pdf
https://www.emergent-values.ai/
https://arxiv.org/abs/2502.17424
https://arxiv.org/abs/1606.03137
https://people.eecs.berkeley.edu/~russell/papers/neurips20ws-assistance
https://arxiv.org/abs/2406.14595
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active learning or goal ensembling techniques? Typically, red-teaming work is associated 
with assessing a final system, but frontiers for future work on specification loopholes may 
involve developing adversarial red-teaming techniques to stress test specifications. 

Conflicting and evolving preferences: Even in a single-stakeholder setting, it is challeng-
ing to fully align with a single human’s values. Existing approaches to developing aligned 
AI assume a human who has fixed, stable, and consistent preferences. However, human 
preferences are complex, dynamic, context-dependent, and sometimes self-contradictory, 
making it fundamentally difficult to align systems with even a single human (Armstrong, 
Casper-A). Directions for continued work include designing systems that continue to learn 
and adapt to changes in user preferences, implementing normatively-accepted ways of 
resolving conflicts between preferences, as well as methods to help human users meaning-
fully analyse and update their preferences over time. 

2.1.2 Multi-Stakeholder Settings
Balancing competing preferences: In practice, humans often disagree on how AI systems 

should behave. This is a fundamentally unsolvable problem. However, there exist principled 
approaches for dynamically adapting to the needs of individual users or managing disa-
greements between users in ways that are normatively accepted (Sorensen). For example, 
many human institutions use voting as an acceptable way of resolving disagreements. In 
AI, developing analogous processes for balancing differences in human opinions is a key 
direction for future work. Such work may benefit from combining social choice theory and 
multiobjective techniques (Baum). It will also be key to study how specifications respect 
relevant legal frameworks and normative ethical principles.

Stress-testing specifications: Even if a specification is appropriate for training and 
testing inputs, it may reward unacceptable behaviours under novel circumstances (Shah-B). 
For highly advanced AI systems, one concern is reward tampering: the act of manipulating 
with oversight mechanisms to achieve better evaluations. Recent language models have 
shown early examples of this tendency (OpenA-E, Hubinger-C). Searching for loopholes in 
a specification (e.g. through manual or automated red-teaming) can help validate whether 
the specification might lead to unintended consequences. 

Ethical and legal alignment: Beyond purely technical metrics, how do we ensure the 
specification respects relevant legal frameworks and ethical principles so that “meeting 
the spec” truly yields societally beneficial outcomes? Furthermore, how can AI developers 
ensure that autonomous systems learn to follow the law? Further work on ethical and legal 
alignment poses both a specification problem and a challenging sociotechnical problem, as 
it requires defining and managing AI systems’ roles in existing ethical and legal systems. 

Specification and validation also intersect with the AGI control problem discussed in Sec-
tion 3, where research priorities include scalable and recursive oversight, weak-to-strong 
generalisation, monitoring for control-undermining actions, as well as building stronger 
theoretical foundations of advanced agents.

https://proceedings.neurips.cc/paper/2018/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://arxiv.org/abs/2307.15217
https://arxiv.org/abs/2402.05070
https://link.springer.com/article/10.1007/s00146-017-0760-1
https://arxiv.org/abs/2210.01790
https://openai.com/index/chain-of-thought-monitoring/
https://arxiv.org/abs/2406.10162
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2.2 Design and implementation: Building the system
“How do we build the system?”

This section focuses on techniques to make systems that meet their specifications. The 
design and implementation process involves sourcing data, pretraining models, post-train-
ing models, and integrating them into AI systems. 

2.2.1 Training data and pretraining
Pretraining is the first and often the most computationally- and data-intensive stage of 

developing modern AI systems. It is also the key stage in which models develop core knowl-
edge representations. Modern AI systems are often pretrained on web-scale datasets, which 
makes it challenging to effectively curate and control the pretraining process (Paullada). 
Common pretraining datasets have been found to contain harmful, toxic, abusive, and 
even illegal content (Birhane-B, Thiel). Meanwhile, researchers have found evidence that 
the presence of harmful data during pretraining can sometimes positively and sometimes 
negatively affect the resulting system’s safety (Huang, Maini). Future work to understand 
the relationship between pretraining dataset contents and learned system behaviours will 
help with efforts to better curate pretraining data. However, this curation is also very chal-
lenging due to scale, challenges with filtering, the massively multilingual nature of internet 
data, and degradation of data quality (Anwar). Frontiers for future work include addressing 
these challenges. 

2.2.2 Robustness 
Contemporary AI systems are developed in stages that include design, pre-training, 

post-training, and system integration (IAISR). However, pre- and post-training are the key 
stages in which AI models gain knowledge and capabilities. Safety-focused training relies 
on a valid specification (see above), a learning signal (often provided in the form of data 
labels and rewards), and a broad enough dataset for the system to learn from. 

Robustness against harmful inputs: Training systems on novel inputs helps to ensure 
that they meet the specified behaviour across a wide range of circumstances. It is particu-
larly common and effective to train AI systems on adversarial inputs which are specifically 
designed to make them fail. By targeting the system’s weak points, adversarial training is 
the principal technique by which AI models are made more robust to deliberate attempts 
by malicious users to make them fail (Ziegler). Such inputs are found through adversarial 
attack techniques (see Section 2.3). Despite current efforts, modern AI systems are still rou-
tinely able to be successfully attacked (e.g. with jailbreaks). Developing and implementing 
more effective robustness training techniques remains a key challenge.

Resistance against harmful tampering: Robustness training for systems that will be de-
ployed with publicly accessible weights poses a unique challenge. Ideally, robustness train-
ing should target the attacks that a system will be vulnerable to in deployment. This means 
that for open-weight models, minimising risks requires robustness both against prompt-
based attacks, which manipulate a system’s inputs, and few-shot model tampering attacks, 

https://www.sciencedirect.com/science/article/pii/S2666389921001847
https://arxiv.org/abs/2306.13141
https://stacks.stanford.edu/file/druid:kh752sm9123/ml_training_data_csam_report-2023-12-23.pdf
https://arxiv.org/abs/2409.18169
https://www.arxiv.org/abs/2504.16980
https://arxiv.org/abs/2404.09932
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf
https://arxiv.org/abs/2205.01663
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which manipulate its internal weights and/or biases. Some researchers have also argued that 
developing tamper-resistant systems can also be key for designing closed-weight systems 
that are highly robust to unforeseen attacks (Che, Greenblatt-B, Hofstätter). However, state-
of-the-art techniques for making systems robust to tampering attacks are very limited in 
their effectiveness, often being able to be undone with only dozens of steps of fine-tuning on 
harmful data (Huang, Qi-B, Che). This suggests major limitations of current techniques for 
safeguarding open-weight systems against malicious tampering. In addition to improving 
on current techniques, frontiers for future work include innovating on how AI systems are 
pretrained (Paullada, Maini) and actively teaching AI systems benign but incorrect informa-
tion about dangerous topics (Anthropic-G). Studying and mitigating risks from open-weight 
models will also benefit from ecosystem monitoring techniques discussed in Section 3.2.

Resistance to harmful distillation: Distillation, which transfers knowledge from a large 
complex model to a smaller model, enables model compression without large performance 
loss (e.g. DeepSeek). It has clear benefits such as enabling efficient model deployment on 
limited-resource devices. Nevertheless, such dual use techniques can also threaten LLM 
safety and security when exploited by malicious users who ‘attack’ a system by training an-
other system to imitate it. The same distillation technique can be used to exfiltrate closed-
weight model capabilities and can facilitate effective proxy attacks against them (Zou). As a 
result, methods to mitigate unwanted distillation can improve the security of closed sys-
tems. Some researchers have proposed sampling methods that can make distillation inef-
fective (e.g. Savani). However, current techniques are unable to effectively mitigate unwant-
ed distillation at scale without major tradeoffs in performance. Thus, frontiers for future 
work include APIs that can detect and handle unwanted distillation events and improved 
techniques for anti-distillation sampling. 

2.2.3 Truthfulness and honesty
Despite their wide use, modern AI systems sometimes produce incorrect statements, 

accidentally or deliberately. In some cases, mechanistic interpretability techniques can de-
termine what the system assesses to be true or false (Marks), in which case dishonesty can 
be defined as stating something ‘believed’ to be false, while incompetence can be defined as 
stating something false that is assessed to be true (Ren-B). In other cases, researchers lack 
insight into what, if anything, the model assesses to be true, rendering the honesty concept 
operationally undefined. 

Dishonesty includes examples of AI systems providing users with information that is 
clearly false because it helps them achieve a broader goal (e.g. Scheuer). Methods for reduc-
ing the occurrence of false or confabulated generations (e.g. hallucinations) from systems 
are an ongoing research challenge. This can include both developing more truthful mod-
els through training on appropriate data (Evans-A) or designing systems to substantiate 
claims and cite references (Zhou). Frontiers for future work will include work to study and 
improve both factuality and honesty while also balancing these paradigms with risks of 
providing harmful information (Ren-A, Ren-B).

https://arxiv.org/abs/2502.05209
https://arxiv.org/abs/2405.19550
https://arxiv.org/abs/2502.02180
https://arxiv.org/abs/2409.18169
https://arxiv.org/abs/2412.07097
https://arxiv.org/abs/2502.05209
https://linkinghub.elsevier.com/retrieve/pii/S2666389921001847
https://www.arxiv.org/abs/2504.16980
https://alignment.anthropic.com/2025/modifying-beliefs-via-sdf/
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2504.13146
https://arxiv.org/abs/2310.06824
https://arxiv.org/pdf/2503.03750?
https://arxiv.org/abs/2311.07590
https://arxiv.org/abs/2110.06674
https://www.zhouyujia.cn/attaches/TrustworthyRAG.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/hash/7ebcdd0de471c027e67a11959c666d74-Abstract-Datasets_and_Benchmarks_Track.html
https://arxiv.org/abs/2503.03750
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2.2.4 Targeted model editing
Model editing techniques offer an alternative to traditional fine-tuning methods by 

allowing engineers to make specific, precise changes to an AI system. By inducing target-
ed changes into the model, editing approaches can potentially offer efficiency and gen-
eralisation advantages over fine-tuning approaches (Wang). For example, model editing 
techniques might be useful for targetedly updating AI systems to correct an unwanted 
tendency such as hallucination or sycophancy. However, current tools are limited in their 
effectiveness and competitiveness. Frontiers for future work include improving both the 
scalability and efficacy of editing tools.

2.2.5 Avoiding hazardous capabilities
It is challenging to ensure that AI systems cannot cause harm when they have powerful 

capabilities. There is a broad space of AI capabilities, and risks generally increase with high 
autonomy, high generality, and high domain intelligence.

Figure 2: AGI can also be thought of as the triple inter-
section of three distinct properties: Autonomy, 

Generality and (domain) Intelligence. Source: 
Keep The Future Human

For example, AlphaFold (Jumper) 
has high intelligence in the narrow 

domain of protein folding, but lacks 
autonomy or generality (“A” or “G”). 
A robotic lawn mower has high au-
tonomy but lacks generality or in-
telligence (“G” or “I”). Both are easy 
to control. A hypothetical future 

self-driving car that outperforms 
any human driver would have high 

autonomy and intelligence, but it poses 
a negligible loss-of-control risk due to low 

generality. Systems having all three traits “A”, 
“G” and “I” are the most difficult to align or control. 

The three research directions below aim to improve trustworthiness by avoiding the “A”, 
“G”, or “I”, respectively.

A.	 Minimally-agentic systems: Techniques for training systems lacking agency/autono-
my (no “A” in the above figure). 

B.	 De-generalised (domain-scoped) systems: Unlearning, domain distillation, and other 
techniques for reducing/limiting domain generality to exclude risky knowledge and 
behaviours (no “G” in the above figure) (Li-B, Barez).

C.	 Intelligence-bounded (capability-scoped) systems: Techniques for reducing/limiting 
domain intelligence (no “I” in the above figure).

https://dl.acm.org/doi/full/10.1145/3698590
https://keepthefuturehuman.ai/
https://www.nature.com/articles/s41586-021-03819-2
https://proceedings.mlr.press/v235/li24bc.html
https://proceedings.mlr.press/v235/li24bc.html
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2.2.6 Guaranteed safety by design
Several research programs aim to design AI systems in such a way that they are guaran-

teed to meet their specification, or they meet it with a probability that can be guaranteed. 
These include but are not limited to (Dalrymple et al):

•	 Verifiable program synthesis: Techniques for distilling subsets of machine-learned 
algorithms and knowledge into formally verified code (Michaud). This is also a form 
of capability reduction, as long as the algorithms and knowledge that an AI system 
is able to verifiably code up is a subset of all its knowledge. For example, a human 
physicist would typically be able to program a rocket steering algorithm they have 
discovered, but not the precise image-processing algorithm they use for recognising 
their mother.

•	 World models with formal guarantees: Research toward developing verifiable models 
of how AI systems affect their environment. These approaches range from probabilis-
tic causal models to sound abstractions of physical laws, which remain challenging to 
construct but could enable precise reasoning about an AI’s potential impacts. 

•	 Compositional verification approaches: Developing methods to build systems from 
smaller verified components. This research direction aims to create verification chains 
from the hardware level upward.

These guarantees can also apply to only some modules or subsets of the system in order 
to reduce the degrees of freedom that need to be actively human-controlled.

2.3 Verification: Assessing if the system works as specified
“Does the system meet its specification (behave as desired)?”

The research areas described in this section aim to assess the extent to which the built 
system (2.2) meets its specifications (2.1). This section discusses several broad types of tech-
niques that can be used to provide evidence that a system is safe. In practice, the effec-
tiveness of these methods is often limited by access and transparency, but they can play a 
central role in constructing AI safety cases: structured arguments for why systems pose an 
acceptably low level of risk (Clymer, Buhl). 

2.3.1 Robustness testing
The goal of robustness testing is to develop techniques for evaluating whether systems 

are trustworthy, even in novel contexts such as unprecedented “black swan” events or 
under attacks from malicious users. This includes developing improved red-teaming tools to 
identify inputs that cause systems to behave harmfully.

Adversarial robustness testing (security): Adversarial testing depends on techniques 
to evaluate system safety under deliberate attempts to make them behave harmfully. There 
are numerous approaches to adversarial testing involving attacks on the model through 
its inputs (“jailbreaks”/black-box attacks) (Jin), through API access (grey-box attacks) (Qi-A), 
and through its internal weights (white-box attacks) (Huang, Che). For example, researchers 
have developed many model “jailbreaking” techniques which can subvert the safeguards in 

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2024/EECS-2024-45.pdf
https://arxiv.org/abs/2402.05110
https://arxiv.org/abs/2403.10462
https://arxiv.org/abs/2410.21572
https://arxiv.org/abs/2407.01599
https://arxiv.org/abs/2310.03693
https://arxiv.org/abs/2409.18169
https://arxiv.org/abs/2502.05209
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modern AI systems, causing them to behave harmfully. Attacks can also be conducted on 
any data modality that the model can process. For example, multimodal models that can 
process text, images, video, and/or audio data can have a very large attack surface as a re-
sult. Key research goals include the continued development of more effective and scalable 
ways to attack systems and integrating those methods into evaluation frameworks. Over 
time, attack research must also adapt to new defences that emerge and vice versa. 

Evaluating robustness in multiagent contexts: Systems that behave safely in simple, 
controlled settings can often fail in novel, more complex contexts. One very prominent ver-
sion of this is emergent failures due to multi-agent interactions. These types of failures are 
expected to become increasingly prominent as highly autonomous AI agents continue to 
be adopted. For example, if one self-driving car learns to drive safely on streets with human 
drivers, it is still possible for it to be unsafe on streets with other self-driving cars because 
they may not behave exactly the same as humans. Multiagent failures are challenging to 
study because they often emerge unexpectedly and are hard to demonstrate in laboratory 
settings. Future work to study and identify emergent multiagent failure modes will involve 
a mix of theory, simulation, and field tests to understand emergent multiagent failure 
modes (Hammond). Further research should also study how agents deployed in the econ-
omy can communicate and cooperate with each other and with people and online services 
to avoid risks, e.g. through interoperability standards and agent authentication (Chan-A, 
Chan-B) as well as learning cooperative skills (Dafoe-A, Dafoe-B).

2.3.2 Quantitative and formal verification
Techniques for quantitative, high-confidence assurances that an AI system meets its 

specification may be able to offer a strong potential foundation for developing safe sys-
tems. The special case of formal verification provides a 100% guarantee given specified 
assumptions.

Quantitative safety: Techniques that provide quantitative risk bounds could provide 
safety assurances akin to existing industry standards for systems such as jet engines and 
nuclear reactors. These solutions include formal verification approaches for proving that 
AI-written code, AI scaffolding, or AI containment measures meet precise specifications. 
Methods for quantitative safety and formal verification also include safe-by-design ap-
proaches. With current models and methods, it is not possible to use these techniques to 
make strong assurance about frontier system behaviours, but continued work may help to 
establish sound and practically useful techniques for making quantitative assurances of 
safety (Dalrymple).

2.3.3 Interpretability
Interpretability techniques aim to provide qualitative or quantitative evidence of system 

trustworthiness based on insights into why the AI system behaves the way it does. 

Mechanistic interpretability: Techniques for understanding how models function and 
represent concepts internally uniquely allow for assessments of internal model cognition. 
These techniques could aid in the discovery of system properties or, if thorough enough, aid 

https://arxiv.org/abs/2502.14143
https://arxiv.org/abs/2406.12137
https://arxiv.org/abs/2501.10114
https://www.nature.com/articles/d41586-021-01170-0
https://arxiv.org/abs/2012.08630
https://arxiv.org/abs/2405.06624
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in constructing safety cases (Clymer, Buhl) for them (Sharkey). For example, mechanistic 
interpretability techniques might be able to help researchers characterise and intervene 
on model representations that correspond to harmful concepts such as deception or mal-
ice. Current research frontiers in mechanistic interpretability involve developing scalable 
techniques that beat black-box baselines for identifying and addressing flaws in systems. 
Mechanistic understanding of models could also help verify the success of other methods 
which are imperfect, such as unlearning of dangerous capabilities (see above) and analys-
ing written ‘chains-of-thought’ (see below).

Explainability: Explainability techniques refer to methods that allow model behaviours 
to be attributed to specific features in their inputs. They can be useful for both diagnosing 
system errors and determining accountability for system failures (Gryz, Casper-B). Howev-
er, current explainability tools are often unreliable (Bordt), highlighting the value of future 
work to improve on existing tools. 

LLM chain-of-thought faithfulness and legibility: Large language model chain-of-
thought reasoning does not always faithfully represent how a model arrived at its answer 
(Turpin). This poses challenges to safety because, without faithful reasoning, models could 
fool overseers by saying one thing and doing another. For example, language models have 
stated that they gave their answer based on a logical argument when they actually chose 
it based on hints that they should not have exploited (Anthropic-D, Turpin), such as seeing 
that the correct answer is always “B”. One potential challenge with chain-of-thought moni-
toring stems from how, under optimisation pressure on their reasoning, systems may learn 
to obfuscate their reasoning in ways that can be actively misleading (OpenAI-E, see also 2.1.1 
above for an example).

Attributing model behaviours to training data: Methods for attributing model behav-
iours to specific examples from training data allow overseers to study how potentially 
harmful behaviours emerge in systems (Grosse). These tools could also help researchers 
identify what types of training interventions can mitigate them. For example, attributing 
control-subverting behaviours to specific examples from training data could help develop-
ers curate safer pretraining datasets. Research frontiers include improving the efficiency 
and scalability of these methods, causally studying how models develop personas and be-
haviours (Anthropic-F), and predicting what data is needed to learn a particular behaviour 
(Engstrom, Ilyas). 

Studying goals in systems: Increasingly agentic AI systems are characterised by increas-
ingly goal-oriented behaviour. As a result, studying the emergence and mechanisms behind 
these behaviours offers a way for researchers to study the system’s alignment with its spec-
ification (Ngo). However, it is challenging to study goals in AI systems because they cannot 
be inspected directly and their behaviour is sometimes but not always consistent with co-
herent principles (Khan, Mazeika). Directions for future work involve developing concrete 
definitions and measures of goals in AI systems (e.g. MacDermott) and interpreting how AI 
systems develop and represent goals internally (e.g. Marks). 

https://arxiv.org/abs/2403.10462
https://arxiv.org/abs/2410.21572
https://arxiv.org/abs/2501.16496
https://www.econstor.eu/handle/10419/235967
https://dl.acm.org/doi/abs/10.1145/3630106.3659037
https://tobias-lib.ub.uni-tuebingen.de/xmlui/handle/10900/147741
https://proceedings.neurips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://www.anthropic.com/research/reasoning-models-dont-say-think
https://proceedings.neurips.cc/paper_files/paper/2023/hash/ed3fea9033a80fea1376299fa7863f4a-Abstract-Conference.html
https://openai.com/index/chain-of-thought-monitoring/
https://arxiv.org/abs/2308.03296
https://alignment.anthropic.com/2025/recommended-directions
https://arxiv.org/abs/2401.12926
https://arxiv.org/abs/2401.12926
https://arxiv.org/abs/2209.00626
https://arxiv.org/abs/2503.08688
https://arxiv.org/abs/2502.08640
https://arxiv.org/abs/2412.04758
https://arxiv.org/abs/2503.10965
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2.3.4 Verifying the effectiveness of safety methods with model organisms
Just as medical researchers use mice with induced diseases to safely study potential 

treatments before testing them on humans, AI safety researchers can create simplified 
AI systems to verify if safety methods are effective. These ‘model organisms’ are designed 
to allow controlled studies of specific safety issues that could emerge in more advanced 
AI systems (Hubinger-D). For example, researchers have created AI models with hidden 
“backdoors” that cause harmful behaviour only when given a specific trigger – simulating 
behaviour that malicious actors could insert or that models sometimes develop naturally 
(Greenblatt-A). This allows them to test whether safety measures can detect such behav-
iour (Marks). Companies can use this setup internally, but external parties can also create 
model organisms to audit the effectiveness of the safety methods used internally. Despite 
its importance, one survey study identified that this research area is still underrepresented 
(Delaney).

https://arxiv.org/abs/2401.05566
https://arxiv.org/pdf/2412.14093
https://arxiv.org/abs/2503.10965
https://arxiv.org/pdf/2409.07878#page=23.63
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3 Control: Monitoring & Intervention
Associated with IAISR chapter 3.4.2  

In engineering, “control” usually refers to the process of managing a system’s behaviour to 
achieve a desired outcome, even when faced with disturbances or uncertainties, and often in a 
feedback loop. The research areas in this category involve: 

A.	 Developing monitoring and intervention mechanisms for AI systems – This includes 
adapting conventional methods for monitoring (e.g. hardware -enabled mechanisms, user 
monitoring) and intervention (e.g. off-switches, override protocols), as well as designing 
new techniques for controlling very powerful AI systems that may actively undermine 
attempts to control them (e.g. scalable oversight, containment).

B.	 Extending monitoring mechanisms to the broader AI ecosystem to which the AI system 
belongs – This entails methods to support the identification and tracking of AI systems 
and data (e.g. logging infrastructure, data provenance, model provenance). In turn, this can 
facilitate accountability infrastructure and enable more informed governance.

https://www.gov.uk/government/publications/international-ai-safety-report-2025/international-ai-safety-report-2025#monitoring-and-intervention
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C.	 Societal resilience research to strengthen societal infrastructure against AI-enabled 
disruption and misuse – This section studies how institutions and norms (e.g. economic, 
security) can adapt as future AI systems come to act as autonomous entities, as well as 
incident response mechanisms to enable clear and rapid coordination among relevant 
actors to detect, respond to, and recover from accidents or misuse of advanced AI systems.

The research areas in this category focus on tools for controlling a system (after it has 
been developed) to behave as desired, often through feedback loops involving monitoring 
and intervention.

What is control? 
In engineering, “control” usually refers to the process of managing or regulating a system’s 
behaviour to achieve a desired outcome. It is about designing mechanisms—often through 
feedback loops—to ensure that a system operates as desired even when faced with disturbances 
or uncertainties. A key contribution from cybernetics, Ashby’s Law (Ashby) of Requisite Variety, 
states that for safety guarantees to be possible, a control system must generally have at least as 
much complexity as the system it aims to control.

3.1 AI system monitoring
In emerging technical fields, new systems cannot be reasonably expected to always behave 

as intended and impact society as expected. Monitoring techniques play an essential role in 
the iterative process of identifying, understanding, and fixing problems as they emerge. 

3.1.1 Conventional monitoring
“Conventional” monitoring methods refer to techniques that can be straightforwardly 

integrated into many types of AI systems regardless of scope, domain, or intelligence. They 
often parallel techniques from other fields such as cybersecurity and content moderation. 
These techniques help researchers study systems and identify potentially harmful actions 
that systems might be taking. When incidents occur, these methods also help in the con-
struction of incident reports. 

Hardware-enabled mechanisms: Certain tools built into hardware can enable compute 
providers to know what is being run on their hardware. These techniques can help to moni-
tor who is running what, where, and how much (RAND). Frontiers for future work on hard-
ware-enabled mechanisms include both the engineering challenge of designing these tools 
to be efficient and the practical challenge of integrating them into compute infrastructure. 

User monitoring: Monitoring for system misuse can help AI service providers identi-
fy potentially malicious users who may be seeking to misuse a system. It is a key part of 
“know-your-customer” approaches to risk management. User monitoring is not as simple 
as identifying potentially harmful instances of use (e.g. chats) due to (1) the risk of uninten-
tionally impeding useful red-teaming (Longpre) and (2) the potential for adversarial users 
to implement sophisticated strategies to evade detection , such as using multiple accounts 
and obfuscation techniques. Frontiers for future work include iteration on methods to effi-
ciently identify risky user behaviours with a low false positive rate. 

https://philpapers.org/archive/ASHAIT.pdf
https://www.rand.org/content/dam/rand/pubs/working_papers/WRA3000/WRA3056-1/RAND_WRA3056-1.pdf
https://arxiv.org/abs/2403.04893
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System state monitoring: Techniques for monitoring a system’s activities can help to 
identify when it might be performing in a harmful or unexpected way. For example, a 
company providing a chatbot service may wish to filter the model’s responses using an un-
safe-text classifier before sending them to a user. There are many different approaches that 
can be taken to state monitoring. Techniques can vary by the object of monitoring which 
can be system inputs, outputs, chains of thought, and/or internal cognition. They can also 
vary by the type of monitor which can include filters, event-loggers, and anomaly detec-
tors. Frontiers for additional research include studying (un)faithfulness in LLM chains of 
thought and (e.g. Turpin) iteration on methods that achieve both a high degree of monitor-
ing efficacy and efficiency, as well as methods for distributed contexts. 

Designing modular, easily monitorable systems: Methods for decomposing complex 
systems into easy-to-monitor components have the potential to improve oversight in two 
ways. First, they mitigate risks of situational awareness and strategic evasion of human 
oversight (Berglund, Anthropic-C) by separating a goal-oriented system into multiple sub-
systems focusing on narrow tasks with no direct knowledge of each other. Second, they 
allow for the information passed between these systems to be more easily monitored. How-
ever, to date, limited empirical research has been conducted on the controllability of differ-
ent modular systems and monitoring setups. Frontiers for future work include the design 
and testing of safe modular systems and methods to have systems decompose complex 
tasks into simpler, more easily-monitored subtasks (Wen-B).

3.1.2 Conventional Intervention
Intervention techniques complement monitoring tools by offering various strategies to 

act on systems in ways that reduce risks from harmful behaviours. 

Hardware-enabled mechanisms: Tools built into hardware could be used to enforce 
requirements about what can be run and by whom on specialised hardware (RAND). For 
example, hardware mechanisms could be used to block or halt certain jobs from being run on 
hardware if they fail an authentication process. However, the main barrier to their use con-
tinues to be the engineering challenge of implementing and integrating these mechanisms. If 
implemented successfully, hardware-enabled mechanisms could play a unique role in verify-
ing compliance, even for international agreements and across borders (Brundage, IAISR).

Off-switches: An “off switch” refers to a mechanism that allows for the effective shut-
down of a system. Shutdowns can be challenging for multiple reasons, including the dis-
tributed nature of systems and the need to pass critical tasks (e.g. driving) onto specialised 
risk-mitigating systems after a shutdown. Key challenges centre on the problems of imple-
menting and integrating reliable mechanisms. Additional challenges for off-switches could 
be posed by systems that actively take actions that prevent humans from shutting them 
down. These will be discussed in 3.1.3. 

Override protocols: Intervention procedures that replace harmful systems or system 
outputs with safe ones offer a final failsafe against harmful behaviour. For example, sys-
tems making high-stakes decisions may require a human in the loop to make key choices, 
and it may be either the system or a human that prompts for human intervention. The 

https://arxiv.org/abs/2305.04388
https://arxiv.org/abs/2309.00667
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https://arxiv.org/abs/2502.04675
https://www.rand.org/content/dam/rand/pubs/working_papers/WRA3000/WRA3056-1/RAND_WRA3056-1.pdf
https://arxiv.org/abs/2004.07213
https://assets.publishing.service.gov.uk/media/679a0c48a77d250007d313ee/International_AI_Safety_Report_2025_accessible_f.pdf


29

3 Control: Monitoring & Intervention

principal challenge and barrier to the effective use of overrides lies in the design of systems 
that effectively balance efficiency with safety. Toward this end, it will also be useful to 
define measures for measuring to what numerical degree a system is under the meaningful 
control of human operators.

Incident and emergency preparedness and response: Research is needed on protocols 
for rapid response and reporting for incidents without introducing new vulnerabilities 
(Wasil-A, Wasil-B). Technical and organisational questions remain about isolating compro-
mised components while maintaining critical functions. A significant challenge involves 
verifying emergency response mechanisms against human error and potential exploitation 
by increasingly capable AI systems.

3.1.3 AGI and ASI control problem
A particularly challenging frontier in operational control involves developing techniques 

for controlling AI systems that are not only highly capable but may actively and strate-
gically attempt to undermine control mechanisms. Unlike conventional methods which 
offer system-agnostic approaches to monitoring and intervention, this section focuses on 
research toward techniques for controlling systems that are potentially very powerful and 
may actively undermine attempts to control them (Hubinger-A). 

Scalable oversight: This research studies techniques that may allow less capable systems 
to oversee and control more capable ones. Common themes behind scalable oversight tech-
niques include affording less-capable overseers more computational resources (Evans-B) or 
having multiple highly-capable systems debate (Irving, Michael), though these might not 
scale to superhuman systems. Research frontiers include improving the reliability of over-
sight even when systemic errors are present, developing more effective AI debate protocols, 
methods for monitoring systems for control-undermining behaviours, and methods for 
monitoring untrusted smarter systems with trusted weaker systems (Greenblatt-A). An-
other promising approach to oversight research is to combine multiple control strategies 
and attempt to quantify their joint success probability. For example, researchers can work 
to quantify the reliability of nested scalable oversight regimes where less capable systems 
oversee more capable ones (Engels). 

Corrigibility and agent foundations research: Corrigibility focuses on techniques for 
ensuring that powerful agentic systems will allow an authorised user to change its goals or 
shut it down (Soares), as well as on the extent to which recursively self-improving systems 
will tend to retain their goals. Corrigibility can be challenging to implement because it is diffi-
cult to theoretically ensure that an agentic system has no incentive to interfere with such in-
terventions (Omohundro). It is also theoretically difficult to control and predict how goal-ori-
ented agentic systems may pursue self-modification, and how this affects goals (Everitt). This 
motivates theoretical and empirical work to study and control how highly agentic systems 
develop tendencies and behave in corrigibility and self-modification scenarios (Anthropic-F). 
Agent foundations research also explores how idealised AI agents would approach moral and 
game-theoretic reasoning (Hammond), including how AI systems’ behaviour can vary sub-
stantially depending on whether the system infers it is in a simulation versus in real-world 

https://arxiv.org/html/2407.17347v1
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https://arxiv.org/abs/2012.07532
https://owainevans.github.io/pdfs/evans_ida_projects.pdf
https://arxiv.org/abs/1805.00899
https://arxiv.org/abs/2311.08702
https://arxiv.org/abs/2312.06942
https://arxiv.org/abs/2504.18530
https://cdn.aaai.org/ocs/ws/ws0067/10124-45900-1-PB.pdf
https://www.taylorfrancis.com/chapters/edit/10.1201/9781351251389-3/basic-ai-drives-stephen-omohundro
https://link.springer.com/chapter/10.1007/978-3-319-41649-6_1
https://alignment.anthropic.com/2025/recommended-directions/
https://arxiv.org/pdf/2502.14143
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environments (a phenomenon already observed in current AI systems (Anthropic).

Containment: As AI systems become increasingly agentic and able to access the internet, 
secure containment of risky systems is a growing challenge. Meanwhile, external threats 
to obtain unauthorised access to models also pose a security threat (Nevo). Frontiers for 
research on containment will involve developing techniques and protocols to keep high-se-
curity systems safe from internal and external threats. 

Non-agentic AI systems as guardrails: Agentic AI systems, especially future ones that 
broadly outperform humans, pose major additional risks compared to other AI systems 
(IAISR, Bengio-B). However, non-agentic AI systems could be used to monitor their pro-
posed actions and intervene by blocking them if needed. These include:

•	 A “Scientist AI” (Bengio-B) could be used to estimate the probability that a candidate 
action from an agentic AI violates any plausible interpretation of safety specifica-
tions, and reject potentially unsafe actions. Certain approaches could guarantee that 
unsafe actions will be identified, with quantitative error bounds (Bengio-B).

•	 “AI control” setups that can effectively monitor and intervene even if the underlying 
untrusted AI system is actively attempting to subvert these safeguards (Greenblatt-A, 
Korbak, Griffin).

Human-centric oversight: Since humans should ultimately remain in control of gener-
al-purpose agents, there will be some natural limits on what systems could be controllable 
in principle given the thinking speed, proactivity, expertise level, attention to detail, and 
reliability of human operators. Even with AIs assisting humans in understanding the given 
context in question per decision point or review point, Ashby’s Law (Ashby) within cyber-
netics suggests that the controlling system must have at least as much expressivity as the 
controlled system. Frontiers in research include how to formulate these measures.

3.2 AI ecosystem monitoring
Developing AI techniques for monitoring the broader ecosystem to which AI systems belong

Just as system monitoring techniques help AI developers oversee their systems, tech-
niques for monitoring the broader AI ecosystem help stakeholders in society oversee the 
field of AI. Methods for ecosystem monitoring support the identification and tracking of AI 
systems and data. In turn, this can facilitate accountability infrastructure, support greater 
public understanding, and enable more informed governance. 

Tracing usage patterns: One key, high-level lens into how AI systems impact the world 
is through usage monitoring (e.g. Anthropic-A). By collecting and monitoring data on how 
users access, download, and/or interact with frontier systems, AI service providers can 
gather insights about potential impacts and risks. However, key challenges with tracking 
usage include privacy preservation, infrastructure for sharing insights, and effective tools 
for identifying potential risks. 

Data provenance: Various techniques can help to identify AI-generated content and are 
a principal defence against AI deepfakes and misinformation. Methods include developing 
reliable classifiers of AI-generated content, watermarking AI-generated data (images, video, 
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audio, and text) (Cao), and tagging AI-generated data with metadata to indicate its origin. 
These techniques are inherently imperfect – they can be undone by tampering with data. 
However, in forensic science, similar techniques like fingerprinting are also circumventable 
but useful nonetheless. Further progress on these methods will involve both more reliable 
methods for data provenance and their integration into AI products and services. 

Model provenance: Tools for model provenance help to identify and track AI models – es-
pecially open-weight ones. Most notably, these tools help researchers study the origins and 
lifecycle of harmful models in the ecosystem. Methods for model provenance involve tech-
niques to help users and AI providers ascertain the identity and origin of a model. This can 
include black-box methods, such as identification backdoors (Cheng), identifiable biases in 
text generation (Kirchenbauer), and white-box methods, such as model weight watermarks. 
Much like data provenance methods, model provenance methods can be circumvented, but 
they can be informative in many cases nonetheless. Research frontiers include studying 
how stable these techniques are under fine-tuning and other modifications to a model’s 
weights. Engineering efforts may also be needed to integrate these techniques into model 
development and platform infrastructure.

Agent authentication: Some protocols can allow for the verification of AI agent iden-
tities while they are using web services. As AI systems become increasingly capable and 
agentic, methods to authenticate AI agents when they use web services are increasingly im-
portant from a security and monitoring standpoint. Key challenges toward effective agent 
authentication lie in the development and standardisation of protocols (e.g. South).

Compute and hardware tracking: Researching techniques and gathering intelligence to 
monitor the distribution of AI hardware, both legal and illegal, enables the assessment of 
risks of malicious and irresponsible use and the allocation of resources to promote benefi-
cial use (Sastry).

Logging infrastructure: Monitoring and saving information about what AI systems are 
doing allows for informed scrutiny when harmful or unexpected events happen. As highly 
autonomous AI systems grow in their capability and influence, there will be a rise in harm-
ful and unintended incidents from these systems’ actions. Having effective infrastructure 
to capture and save information about what these systems do will be key for improving 
awareness and accountability in the age of advanced AI agents (Chan). Logged incidents 
and the necessary infrastructure constitute another example of a potential area of mutual 
interest. Just as competing aircraft manufacturers voluntarily share data about aircraft 
accidents, companies or countries may find it in their interest to share and jointly collect 
information about serious AI incidents. Establishing shared incident reporting systems 
allows the field to collectively learn from serious failures and risks, ensuring safety and 
security to foster public trust in AI’s opportunities.

Assessing risk-management frameworks: Technical tools for risk management are only 
effective inasmuch as they are meaningfully integrated into safety frameworks. Just as it 
is key to evaluate and monitor AI systems, it is also necessary to evaluate and monitor risk 
management protocols for their effectiveness and robustness to single points of failure 
(e.g. human error). Currently, researchers’ ability to assess risk management frameworks is 
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limited by the degree of transparency into how AI developers manage risks. However, mon-
itoring the successes and failures of safety frameworks is key for risk management over 
time (Alaga).It is also an area of mutual interest due to the value of sharing insights on best 
practices and potential failures of risk management frameworks. Frontiers for future work 
include refining assessment frameworks and developing reporting infrastructure.

3.3 Societal resilience research
Future disruptions from AI may not manifest as distinct well-scoped events, but instead 

as a cascade of various harms, rippling throughout society (Lawrence). This suggests that 
resilience to AI risks may require resilience to a variety of threat vectors (Bernardi). Re-
search on societal resilience should investigate methods to strengthen economic, biological, 
and information security infrastructure against AI-enabled disruptions and misuse. It will 
also be key to study how institutions and norms can adapt as future AI systems come to act 
as (and potentially be recognised as) as autonomous entities (Zeng-A, Zeng-B, Long). Finally, 
effective management of AI incidents will hinge on clear and rapid coordination among 
relevant actors to detect, respond to, and recover from accidents or misuse of advanced AI 
systems (Wasil-A).
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